Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 317, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38549059

RESUMEN

BACKGROUND: The growth-regulating factor-interacting factor (GIF) gene family plays a vital role in regulating plant growth and development, particularly in controlling leaf, seed, and root meristem homeostasis. However, the regulatory mechanism of heteromorphic leaves by GIF genes in Populus euphratica as an important adaptative trait of heteromorphic leaves in response to desert environment remains unknown. RESULTS: This study aimed to identify and characterize the GIF genes in P. euphratica and other five Salicaceae species to investigate their role in regulating heteromorphic leaf development. A total of 27 GIF genes were identified and characterized across six Salicaceae species (P. euphratica, Populus pruinose, Populus deltoides, Populus trichocarpa, Salix sinopurpurea, and Salix suchowensis) at the genome-wide level. Comparative genomic analysis among these species suggested that the expansion of GIFs may be derived from the specific Salicaceae whole-genome duplication event after their divergence from Arabidopsis thaliana. Furthermore, the expression data of PeGIFs in heteromorphic leaves, combined with functional information on GIF genes in Arabidopsis, indicated the role of PeGIFs in regulating the leaf development of P. euphratica, especially PeGIFs containing several cis-acting elements associated with plant growth and development. By heterologous expression of the PeGIF3 gene in wild-type plants (Col-0) and atgif1 mutant of A. thaliana, a significant difference in leaf expansion along the medial-lateral axis, and an increased number of leaf cells, were observed between the overexpressed plants and the wild type. CONCLUSION: PeGIF3 enhances leaf cell proliferation, thereby resulting in the expansion of the central-lateral region of the leaf. The findings not only provide global insights into the evolutionary features of Salicaceae GIFs but also reveal the regulatory mechanism of PeGIF3 in heteromorphic leaves of P. euphratica.


Asunto(s)
Arabidopsis , Populus , Salicaceae , Salix , Salicaceae/genética , Hojas de la Planta , Salix/genética , Genómica , Regulación de la Expresión Génica de las Plantas
2.
Hortic Res ; 11(3): uhae034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38544549

RESUMEN

The Populus pruinosa is a relic plant that has managed to survive in extremely harsh desert environments. Owing to intensifying global warming and desertification, research into ecological adaptation and speciation of P. pruinosa has attracted considerable interest, but the lack of a chromosome-scale genome has limited adaptive evolution research. Here, a 521.09 Mb chromosome-level reference genome of P. pruinosa was reported. Genome evolution and comparative genomic analysis revealed that tandemly duplicated genes and expanded gene families in P. pruinosa contributed to adaptability to extreme desert environments (especially high salinity and drought). The long terminal repeat retrotransposons (LTR-RTs) inserted genes in the gene body region might drive the adaptive evolution of P. pruinosa and species differentiation in saline-alkali desert environments. We recovered genetic differentiation in the populations of the northern Tianshan Mountain and southern Tianshan Mountain through whole-genome resequencing of 156 P. pruinosa individuals from 25 populations in China. Further analyses revealed that precipitation drove the local adaptation of P. pruinosa populations via some genetic sites, such as MAG2-interacting protein 2 (MIP2) and SET domain protein 25 (SDG25). This study will provide broad implications for adaptative evolution and population studies by integrating internal genetic and external environmental factors in P. pruinosa.

3.
Med Sci Monit ; 29: e941670, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38111192

RESUMEN

BACKGROUND Myopia results when light rays focus before reaching the retina, causing blurred vision. High myopia (HM), defined by a refractive error of ≤-6 diopters (D) or an axial length of ≥26 mm, is an extreme form of this condition. The progression from HM to pathological myopia (PM) is marked by extensive ocular axis elongation. The rise in myopia has escalated concerns for HM due to its potential progression to pathological myopia. The covert progression of HM calls for thorough analysis of its current research landscape. MATERIAL AND METHODS HM-related publications from 2003-2022 were retrieved from the Web of Science database. Using VOSviewer and Citespace software, we conducted a bibliometric and visualized analysis to create document co-citation network maps. These maps detailed authors, institutions, countries, key terms, and significant literature. RESULTS From 9,079 articles, 8,241 were reviewed. An increasing trend in publications was observed, with Kyoko Ohno-Matsui identified as a top contributor. The Journal of Cataract and Refractive Surgery was the primary publication outlet. Chinese researchers and institutions were notably active. The document citation network identified five focal areas: refractive surgery, clinical manifestations/treatment, prevention/control, genetics, and open angle glaucoma. CONCLUSIONS Research emphasis in HM has shifted from refractive surgery for visual acuity enhancement to the diagnosis, classification, prevention, and control of HM complications. Proposals for early myopia intervention to prevent HM are gaining attention. Genetics and HM's link with open angle glaucoma, though smaller in focus, significantly enhance our understanding of HM.


Asunto(s)
Catarata , Glaucoma de Ángulo Abierto , Miopía Degenerativa , Humanos , Miopía Degenerativa/complicaciones , Miopía Degenerativa/diagnóstico , Glaucoma de Ángulo Abierto/complicaciones , Retina , Trastornos de la Visión
4.
Plant Physiol ; 192(1): 188-204, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36746772

RESUMEN

Despite the high economic and ecological importance of forests, our knowledge of the adaptive evolution of leaf traits remains very limited. Euphrates poplar (Populus euphratica), which has high tolerance to arid environment, has evolved four heteromorphic leaf forms, including narrow (linear and lanceolate) and broad (ovate and broad-ovate) leaves on different crowns. Here, we revealed the significant functional divergence of four P. euphratica heteromorphic leaves at physiological and cytological levels. Through global analysis of transcriptome and DNA methylation across tree and leaf developmental stages, we revealed that gene expression and DNA epigenetics differentially regulated key processes involving development and functional adaptation of heteromorphic leaves, such as hormone signaling pathways, cell division, and photosynthesis. Combined analysis of gene expression, methylation, ATAC-seq, and Hi-C-seq revealed longer interaction of 3D genome, hypomethylation, and open chromatin state upregulates IAA-related genes (such as PIN-FORMED1 and ANGUSTIFOLIA3) and promotes the occurrence of broad leaves while narrow leaves were associated with highly concentrated heterochromatin, hypermethylation, and upregulated abscisic acid pathway genes (such as Pyrabactin Resistance1-like10). Therefore, development of P. euphratica heteromorphic leaves along with functional divergence was regulated by differentially expressed genes, DNA methylation, chromatin accessibility, and 3D genome remodeling to adapt to the arid desert. This study advances our understanding of differential regulation on development and functional divergence of heteromorphic leaves in P. euphratica at the multi-omics level and provides a valuable resource for investigating the adaptive evolution of heteromorphic leaves in Populus.


Asunto(s)
Populus , Populus/fisiología , Multiómica , Hojas de la Planta/metabolismo , Transcriptoma/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Gene ; 855: 147124, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36539045

RESUMEN

The R2R3-MYB transcription factors are widely involved in the regulation of plant growth, biotic and abiotic stress responses. Meanwhile, seed germination, which is stimulated by internal and external environments, is a critical stage in the plant life cycle. However, the identification, characterization, and expression profiling of the Populus euphratica R2R3-MYB family in drought response during seed germination have been unknown. Our study attempted to identify and characterize the R2R3-MYB genes in P. euphratica (PeR2R3-MYBs) and explore how R2R3-MYBs trigger the drought and abscisic acid (ABA) response mechanism in its seedlings. Based on the analysis of comparative genomics, 174 PeR2R3-MYBs were identified and expanded driven by whole genome duplication or segment duplication events. The analysis of Ka/Ks ratios showed that, in contrast to most PeR2R3-MYBs, the other PeR2R3-MYBs were subjected to positive selection in P. euphratica. Further, the expression data of PeR2R3-MYBs under drought stress and ABA treatment, together with available functional data for Arabidopsis thaliana MYB genes, supported the hypothesis that PeR2R3-MYBs involved in response to drought are dependent or independent on ABA signaling pathway during seed germination, especially PeR2R3-MYBs with MYB binding sites (MBS) cis-element and/or tandem duplication. This study is the first report on the genome-wide analysis of PeR2R3-MYBs, as well as the other two Salicaceae species. The duplication events and differential expressions of PeR2R3-MYBs play important roles in enhancing the adaptation to drought desert environment. Our results provide a reference for prospective functional studies of R2R3-MYBs of poplars and lay the foundation for new breeding strategies to improve the drought tolerance of P. euphratica.


Asunto(s)
Arabidopsis , Populus , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Populus/genética , Populus/metabolismo , Genes myb , Proteínas de Plantas/metabolismo , Sequías , Estudios Prospectivos , Fitomejoramiento , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia
6.
Heliyon ; 8(10): e10601, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36212010

RESUMEN

Increasing eutrophication and climate change have led to heavy cyanobacterial blooms in water diversion sources (e.g., lakes, reservoirs), which can potentially cause algae-bearing water to spread to downstream to an urban river network via diversion channels. Defining the extent of cyanobacterial blooms in an urban river network has become a novel concern in urban river management. In this paper, we investigated the physicochemical and algae community characteristics of a small, closed, urban river network, JiangXinZhou (JXZ), in the Lake Taihu basin. We propose a novel indicator, resource use efficiency (RUE), for defining the extent of cyanobacterial blooms in JXZ, whose recreational drinking water comes entirely from outside diversion sources. The results show that the JXZ's aquatic habitat conditions (mean water temperature, total nitrogen concentration, total phosphorus concentration, and nitrogen to phosphorus ratio) are highly suitable for the proliferation of cyanobacterial biomass during the high-water period. The RUE was used for calculation and shows a strong relationship with algae density, which means that it can be used as an index to define the degree of urban river cyanobacterial blooms. The findings indicate that the risk of cyanobacterial bloom is absent when the RUE is less than 46.81; blooms appear in the water bodies when the RUE reaches up to 106.68. This work provides theoretical support for the sustainable use of regional water resources.

7.
Front Public Health ; 10: 946439, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991008

RESUMEN

Background: Previous studies have found that exposure to heavy metals increased the incidence of congenital heart defects (CHDs). However, there is a paucity of information about the connection between exposure to titanium and CHDs. This study sought to examine the relationship between prenatal titanium exposure and the risk of CHDs in offspring. Methods: We looked back on a birth cohort study that was carried out in our hospital between 2010 and 2012. The associations between titanium exposure and the risk of CHDs were analyzed by using logistic regression analysis to investigate titanium concentrations in maternal whole blood and fetal umbilical cord blood. Results: A total of 97 case groups and 194 control groups were included for a nested case-control study. The [P50 (P25, P75)] of titanium were 371.91 (188.85, 659.15) µg/L and 370.43 (264.86, 459.76) µg/L in serum titanium levels in pregnant women and in umbilical cord serum titanium content in the CHDs group, respectively. There was a moderate positive correlation between the concentration of titanium in pregnant women's blood and that in umbilical cord blood. A higher concentrations of maternal blood titanium level was associated with a greater risk of CHDs (OR 2.706, 95% CI 1.547-4.734), the multiple CHDs (OR 2.382, 95% CI 1.219-4.655), atrial septal defects (OR 2.367, 95% CI 1.215-4.609), and patent ductus arteriosus (OR 2.412, 95% CI 1.336-4.357). Dramatically higher concentrations of umbilical cord blood levels had an increased risk of CHDs and different heart defects. Conclusion: Titanium can cross the placental barrier and the occurrence of CHDs may be related to titanium exposure.


Asunto(s)
Cardiopatías Congénitas , Metales Pesados , Estudios de Casos y Controles , China/epidemiología , Estudios de Cohortes , Femenino , Cardiopatías Congénitas/epidemiología , Cardiopatías Congénitas/etiología , Humanos , Exposición Materna/efectos adversos , Metales Pesados/efectos adversos , Placenta , Embarazo , Titanio/efectos adversos
8.
Front Plant Sci ; 12: 705083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456946

RESUMEN

Populus sect. Turanga (hereafter referred to as "Populus"), including Populus euphratica and Populus pruinosa, are the predominant tree species in desert riparian forests in northwestern China. These trees play key roles in maintaining ecosystem balance, curbing desertification, and protecting biodiversity. However, the distribution area of Populus forests has been severely diminished and degraded in recent years due to increased habitat destruction and human activity. Understanding the genetic diversity among Populus individuals and populations is essential for designing conservation strategies, but comprehensive studies of their genetic diversity in northwest China are lacking. Here, we assessed the population structures and genetic diversity of 1,620 samples from 85 natural populations of Populus (59 P. euphratica and 26 P. pruinosa populations) covering all of northwestern China using 120 single nucleotide polymorphism (SNP) markers. Analysis of population structure revealed significant differentiation between these two sister species and indicated that strong geographical distribution patterns, a geographical barrier, and environmental heterogeneity shaped the extant genetic patterns of Populus. Both P. euphratica and P. pruinosa populations in southern Xinjiang had higher genetic diversity than populations in other clades, perhaps contributing to local geographic structure and strong gene flow. Analysis of molecular variance (AMOVA) identified 15% variance among and 85% variance within subpopulations. Mantel tests suggested that the genetic variation among P. euphratica and P. pruinosa populations could be explained by both geographical and environmental distance. The genetic diversity of P. euphratica showed a significant negative correlation with latitude and longitude and a positive correlation with various environmental factors, such as precipitation of warmest quarter and driest month, temperature seasonality, and annual mean temperature. These findings provide insights into how the genetic differentiation of endangered Populus species was driven by geographical and environmental factors, which should be helpful for designing strategies to protect these genetic resources in the future.

9.
J Proteomics ; 247: 104337, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34298183

RESUMEN

The aim of this work was to gain insight into the molecular mechanisms underlying the effect of fulvic acid on drought-exposed tea plants. We performed proteomic analysis of fulvic acid-treated tea leaves from the target plants using tandem mass tag quantitative labeling technology and compared the results with those of a previous transcriptomic analysis. We identified 48 and 611 differentially abundant proteins in the leaves of tea plants treated with fulvic acid compared with the control under mild and severe drought, respectively. Comparative analysis showed that, under severe drought, 55 genes had similar expression patterns at the transcriptome and proteome levels, such as PAL, GBE, GBSS and bAS. Bioinformatic analysis revealed that those genes were mainly related to the starch and sucrose metabolism, phenylpropanoid biosynthesis and triterpenoid biosynthesis. SIGNIFICANCE: This study broadens the understanding of the molecular mechanisms underlying the improved drought resistance seen in tea plants in the presence of fulvic acid and provides a basis for further research on the genomics of drought tolerance in these plants. In addition, these findings could be used to develop new guidance strategies for improved drought management systems in tea plantation.


Asunto(s)
Camellia sinensis , Sequías , Benzopiranos , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Metabolismo Secundario , Almidón , Sacarosa , , Transcriptoma
10.
BMC Genomics ; 21(1): 411, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32552744

RESUMEN

BACKGROUND: Fulvic acid (FA) is a kind of plant growth regulator, which can promote plant growth, play an important role in fighting against drought, improve plant stress resistance, increase production and improve quality. However, the function of FA in tea plants during drought stress remain largely unknown. RESULTS: Here, we examined the effects of 0.1 g/L FA on genes and metabolites in tea plants at different periods of drought stress using transcriptomics and metabolomics profiles. Totally, 30,702 genes and 892 metabolites were identified. Compared with controlled groups, 604 and 3331 differentially expressed metabolite genes (DEGs) were found in FA-treated tea plants at 4 days and 8 days under drought stress, respectively; 54 and 125 differentially expressed metabolites (DEMs) were also found at two time points, respectively. Bioinformatics analysis showed that DEGs and DEMs participated in diverse biological processes such as ascorbate metabolism (GME, AO, ALDH and L-ascorbate), glutathione metabolism (GST, G6PDH, glutathione reduced form and CYS-GYL), and flavonoids biosynthesis (C4H, CHS, F3'5'H, F3H, kaempferol, quercetin and myricetin). Moreover, the results of co-expression analysis showed that the interactions of identified DEGs and DEMs diversely involved in ascorbate metabolism, glutathione metabolism, and flavonoids biosynthesis, indicating that FA may be involved in the regulation of these processes during drought stress. CONCLUSION: The results indicated that FA enhanced the drought tolerance of tea plants by (i) enhancement of the ascorbate metabolism, (ii) improvement of the glutathione metabolism, as well as (iii) promotion of the flavonoids biosynthesis that significantly improved the antioxidant defense of tea plants during drought stress. This study not only confirmed the main strategies of FA to protect tea plants from drought stress, but also deepened the understanding of the complex molecular mechanism of FA to deal with tea plants to better avoid drought damage.


Asunto(s)
Ácido Ascórbico/metabolismo , Benzopiranos/farmacología , Vías Biosintéticas/efectos de los fármacos , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/efectos de los fármacos , Camellia sinensis/genética , Camellia sinensis/metabolismo , Sequías , Flavonoides/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Proteínas de Plantas/genética , Estrés Fisiológico
11.
Sci Rep ; 9(1): 17525, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31772286

RESUMEN

Cysteine S-nitrosylation is a reversible protein post-translational modification and critically regulates the activity, localization and stability of proteins. Tea (Camellia sinensis (L.) O. Kuntze) is one of the most thoroughly studied evergreen crop due to its broad non-alcoholic beverage and huge economic impact in the world. However, little is known about the S-nitrosylome in this plant. Here, we performed a global analysis of cysteine S-nitrosylation in tea leaves. In total, 228 cysteine S-nitrosylation sites were identified in 191 proteins, representing the first extensive data on the S-nitrosylome in tea plants. These S-nitrosylated proteins were located in various subcellular compartments, especially in the chloroplast and cytoplasm. Furthermore, the analysis of functional enrichment and PPI network revealed that the S-nitrosylated proteins were mainly involved in multiple metabolic pathways, including glycolysis, pyruvate metabolism, Calvin cycle and TCA cycle. Overall, this study not only systematically identified the proteins of S-nitrosylation in cysteines of tea leaves, but also laid the solid foundation for further verifying the roles of S-nitrosylation in cysteines of tea plants.


Asunto(s)
Camellia sinensis/metabolismo , Redes y Vías Metabólicas , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Cromatografía Líquida de Alta Presión , Cisteína/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Compuestos Nitrosos/metabolismo , Mapas de Interacción de Proteínas , Procesamiento Proteico-Postraduccional
12.
BMC Genomics ; 20(1): 340, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31060518

RESUMEN

BACKGROUND: Lysine crotonylation, as a novel evolutionarily conserved type of post-translational modifications, is ubiquitous and essential in cell biology. However, its functions in tea plants are largely unknown, and the full functions of lysine crotonylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Our study attempts to describe the global profiling of nonhistone lysine crotonylation in tea leaves and to explore how ammonium (NH4+) triggers the response mechanism of lysine crotonylome in tea plants. RESULTS: Here, we performed the global analysis of crotonylome in tea leaves under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 lysine crotonylation sites on 971 proteins were identified, of which contained in 15 types of crotonylated motifs. Most of crotonylated proteins were located in chloroplast (37%) and cytoplasm (33%). Compared with NH4+ deficiency, 120 and 151 crotonylated proteins were significantly changed at 3 h and 3 days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed crotonylated proteins participated in diverse biological processes such as photosynthesis (PsbO, PsbP, PsbQ, Pbs27, PsaN, PsaF, FNR and ATPase), carbon fixation (rbcs, rbcl, TK, ALDO, PGK and PRK) and amino acid metabolism (SGAT, GGAT2, SHMT4 and GDC), suggesting that lysine crotonylation played important roles in these processes. Moreover, the protein-protein interaction analysis revealed that the interactions of identified crotonylated proteins diversely involved in photosynthesis, carbon fixation and amino acid metabolism. Interestingly, a large number of enzymes were crotonylated, such as Rubisco, TK, SGAT and GGAT, and their activities and crotonylation levels changed significantly by sensing ammonium, indicating a potential function of crotonylation in the regulation of enzyme activities. CONCLUSIONS: The results indicated that the crotonylated proteins had a profound influence on metabolic process of tea leaves in response to NH4+ deficiency/resupply, which mainly involved in diverse aspects of primary metabolic processes by sensing NH4+, especially in photosynthesis, carbon fixation and amino acid metabolism. The data might serve as important resources for exploring the roles of lysine crotonylation in N metabolism of tea plants. Data were available via ProteomeXchange with identifier PXD011610.


Asunto(s)
Compuestos de Amonio/farmacología , Camellia sinensis/metabolismo , Crotonatos/química , Lisina/química , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Camellia sinensis/efectos de los fármacos , Camellia sinensis/crecimiento & desarrollo , Biología Computacional , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Mapas de Interacción de Proteínas
13.
J Orthop Surg Res ; 14(1): 89, 2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30922408

RESUMEN

BACKGROUND: Posterior lumbar spinal fusion has been widely used in degenerative lumbar stenosis, but adjacent segment degeneration (ASD) was common. Researchers have found many risk factors for ASD after one or two levels of surgery, but few clinical studies focused on multi-level surgery. The purpose of this study was to clarify risk factors for upper ASD after multi-level posterior lumbar spinal fusion. METHODS: A retrospective study was performed on the clinical data of 71 patients with degenerative lumbar stenosis who underwent multi-level (at least 3 levels) posterior lumbar spinal fusion from January 2013 to December 2016. Two groups were divided according to lamina and posterior ligamentous complex (PLC) maintenance of proximal fixed vertebrae in surgery. In the 22 patients of group A, the proximal fixed vertebral lamina and PLC were not resected, and in the 49 patients of group B, the proximal fixed vertebral lamina and PLC were resected completely. Age, sex, body mass index (BMI), number of fixed vertebrae and fused levels, spinopelvic parameters, coronal Cobb angle, and modified Pfirrmann grading system were measured for each patient. A Cox proportional hazards model was used to analyze risk factors for upper ASD. RESULTS: No symptomatic ASD was found during the follow-up period. Patients who underwent proximal fixed vertebral lamina and PLC resection had a significantly higher percentage of radiographic ASD (P = 0.042). The Cox proportional hazards model showed that age, sex, BMI, preoperative lumbar lordosis, sacral slope, pelvic tilt, coronal Cobb angle, number of fixed vertebrae, and interbody fusion levels had no significant differences for radiographic ASD. But a preoperative modified Pfirrmann grade higher than 3, a high degree of preoperative pelvic incidence, and more decompressed levels had statistical significance (P = 0.024, 0.041, and 0.008, respectively). CONCLUSIONS: A preoperative modified Pfirrmann grade higher than 3, a high degree of preoperative pelvic incidence, and more decompressed levels might be risk factors for upper radiographic ASD after multi-level posterior lumbar spinal fusion surgery.


Asunto(s)
Degeneración del Disco Intervertebral/diagnóstico por imagen , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Complicaciones Posoperatorias/diagnóstico por imagen , Fusión Vertebral/tendencias , Anciano , Femenino , Humanos , Degeneración del Disco Intervertebral/epidemiología , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Fusión Vertebral/efectos adversos , Estenosis Espinal/diagnóstico por imagen , Estenosis Espinal/cirugía
14.
Theor Appl Genet ; 131(8): 1699-1714, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29754325

RESUMEN

KEY MESSAGE: Phosphorus deficiency in soil is a worldwide constraint threatening maize production. Through a genome-wide association study, we identified molecular markers and associated candidate genes and molecular pathways for low-phosphorus stress tolerance. Phosphorus deficiency in soils will severely affect maize (Zea mays L.) growth and development, thus decreasing the final yield. Deciphering the genetic basis of yield-related traits can benefit our understanding of maize tolerance to low-phosphorus stress. However, considering that yield-related traits should be evaluated under field condition with large populations rather than under hydroponic condition at a single-plant level, searching for appropriate field experimental sites and target traits for low-phosphorus stress tolerance is still very challenging. In this study, a genome-wide association analysis using two natural populations was performed to detect candidate genes in response to low-phosphorus stress at two experimental sites representative of different climate and soil types. In total, 259 candidate genes were identified and these candidate genes are mainly involved in four major pathways: transcriptional regulation, reactive oxygen scavenging, hormone regulation, and remodeling of cell wall. Among these candidate genes, 98 showed differential expression by transcriptome data. Based on a haplotype analysis of grain number under phosphorus deficiency condition, the positive haplotypes with favorable alleles across five loci increased grain number by 42% than those without favorable alleles. For further verifying the feasibility of genomic selection for improving maize low-phosphorus tolerance, we also validated the predictive ability of five genomic selection methods and suggested that moderate-density SNPs were sufficient to make accurate predictions for low-phosphorus tolerance traits. All these results will facilitate elucidating genetic basis of maize tolerance to low-phosphorus stress and improving marker-assisted selection efficiency in breeding process.


Asunto(s)
Fósforo/fisiología , Estrés Fisiológico , Zea mays/genética , Alelos , Mapeo Cromosómico , Estudios de Asociación Genética , Haplotipos , Fenotipo , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Zea mays/fisiología
15.
Glob Chang Biol ; 21(4): 1715-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25216023

RESUMEN

Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.


Asunto(s)
Agricultura/métodos , Carbono/química , Productos Agrícolas/crecimiento & desarrollo , Nitrógeno/química , Suelo/química , Biomasa , Secuestro de Carbono , Ciclo del Nitrógeno , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estaciones del Año , Triticum/crecimiento & desarrollo , Vicia faba/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
16.
PLoS One ; 9(12): e113984, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486249

RESUMEN

Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha-1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha-1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed fertilizer inputs.


Asunto(s)
Agricultura/métodos , Productos Agrícolas , Suelo , China , Productos Agrícolas/crecimiento & desarrollo , Grano Comestible , Fertilizantes , Suelo/química
17.
Sci China Life Sci ; 56(9): 823-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23900569

RESUMEN

Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.


Asunto(s)
Brassica napus/metabolismo , Productos Agrícolas/metabolismo , Fabaceae/metabolismo , Metales/metabolismo , Zea mays/metabolismo
18.
Proc Natl Acad Sci U S A ; 104(27): 11192-6, 2007 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-17592130

RESUMEN

Intercropping, which grows at least two crop species on the same pieces of land at the same time, can increase grain yields greatly. Legume-grass intercrops are known to overyield because of legume nitrogen fixation. However, many agricultural soils are deficient in phosphorus. Here we show that a new mechanism of overyielding, in which phosphorus mobilized by one crop species increases the growth of a second crop species grown in alternate rows, led to large yield increases on phosphorus-deficient soils. In 4 years of field experiments, maize (Zea mays L.) overyielded by 43% and faba bean (Vicia faba L.) overyielded by 26% when intercropped on a low-phosphorus but high-nitrogen soil. We found that overyielding of maize was attributable to below-ground interactions between faba bean and maize in another field experiment. Intercropping with faba bean improved maize grain yield significantly and above-ground biomass marginally significantly, compared with maize grown with wheat, at lower rates of P fertilizer application (<75 kg of P(2)O(5) per hectare), and not significantly at high rate of P application (>112.5 kg of P(2)O(5) per hectare). By using permeable and impermeable root barriers, we found that maize overyielding resulted from its uptake of phosphorus mobilized by the acidification of the rhizosphere via faba bean root release of organic acids and protons. Faba bean overyielded because its growth season and rooting depth differed from maize. The large increase in yields from intercropping on low-phosphorus soils is likely to be especially important on heavily weathered soils.


Asunto(s)
Agricultura/métodos , Biodiversidad , Fósforo/metabolismo , Suelo/análisis , Agricultura/economía , Nitrógeno/metabolismo , Fósforo/deficiencia , Raíces de Plantas/metabolismo , Solubilidad , Vicia faba/crecimiento & desarrollo , Vicia faba/metabolismo , Vicia faba/fisiología , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Zea mays/fisiología
19.
Oecologia ; 147(2): 280-90, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16211394

RESUMEN

Even though ecologists and agronomists have considered the spatial root distribution of plants to be important for interspecific interactions in natural and agricultural ecosystems, few experimental studies have quantified patterns of root distribution dynamics and their impacts on interspecific interactions. A field experiment was conducted to investigate the relationship between root distribution and interspecific interactions between intercropped plants. Roots were sampled twice by auger and twice by the monolith method in wheat (Triticum aestivum L.)/maize (Zea mays L.) and faba bean (Vicia faba L.)/maize intercropping and in sole wheat, maize, and faba bean up to 100 cm depth in the soil profile. The results showed that the roots of intercropped wheat spread under maize plants, and had much greater root length density (RLD) at all soil depths than sole wheat. The roots of maize intercropped with wheat were limited laterally, but had a greater RLD than sole-cropped maize. The RLD of maize intercropped with faba bean at different soil depths was influenced by intercropping to a smaller extent compared to maize intercropped with wheat. Faba bean had a relatively shallow root distribution, and the roots of intercropped maize spread underneath them. The results support the hypotheses that the overyielding of species showing benefit in the asymmetric interspecific facilitation results from greater lateral deployment of roots and increased RLD, and that compatibility of the spatial root distribution of intercropped species contributes to symmetric interspecific facilitation in the faba bean/maize intercropping.


Asunto(s)
Raíces de Plantas/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Vicia faba/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...